Geographically Weighted Regression (GWR): A Better Spatial Technique to Model Sediments Quality of Lake Okeechobee

FL-ASPRS Annual Meeting

Yaoyang Yan, PhD, GISP Senior Geographer

August 23, 2013

Outline

- I. Background
- II. Objectives
- **III.** Methodologies
- **IV.** Data exploration
- v. GWR models for total phosphorus (TP)
- vi. Conclusions

I. Background

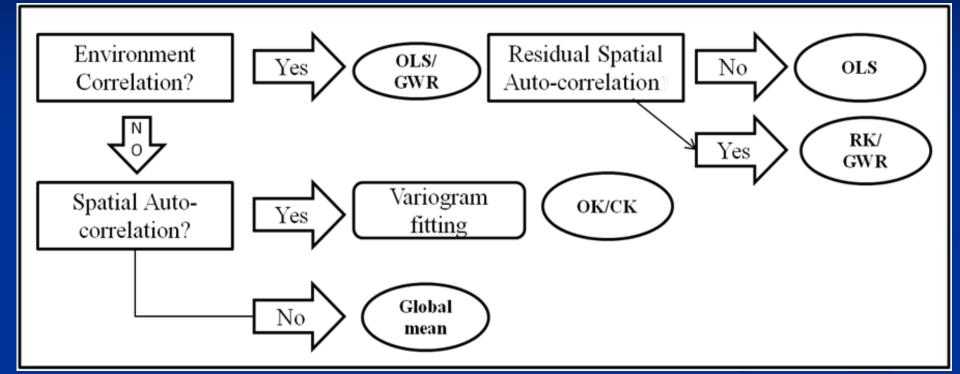
- Lake Okeechobee is the largest lake in the southeastern US with an area of 1730 km² and an average depth of 2.7 m;
- Lake Okeechobee has excessive phosphorus loads:
 - TP accumulated in mud sediments (44% of lake bottom)
 - Increased TP concentration in water column
 - Increased algal blooms
- It is critical to track the nutrient distribution and its changes over-time

II. Objectives

- Develop optimal spatial models for TP in the lake sediments;
- Examine the spatial changes of TP (1988-2006);
- Calculate the amount of nutrients (TP), its spatial-temporal changes, and identify the hotspots.

Outline

- I. Background
- II. Objectives
- **III.** Methodologies
- **IV.** Data exploration
- v. GWR models for total phosphorus (TP)
- vi. Conclusions


III. Methodologies

- Changes of spatial modeling techniques
- Model selection & model accuracy
- Geographically Weighted Regression (GWR)
 - Weighting functions & bandwidth
 - Optimal bandwidth & nearest neighbors
 - Model performance

Development of Spatial Modeling Techniques

- Great efforts have been made to develop generic and robust spatial interpolation techniques for many years;
- Kriging and its variants (from 1950s)
- Environmental correlation (Regression) (1990s -)
 - Development of GIS and remote sensing technologies
- Hybrid models
 - Ancillary data is used to improve spatial prediction;
 - Good for non-stationary data;
 - Examples:
 - Regression-Kriging (RK) (late 1990s-)
 - Spatial regression (GWR) (2000s-)

Geostatistical Model Selection Procedure

(OLS: ordinary least square, OK: ordinary kriging; CK: Cokriging; RK: regression-kriging and GWR: geographically weighted regression)

sfwmd.gov

Model Accuracy and Comparison

Use objective criteria to evaluate model errors, robustness and reliability

Mean error:

$$ME = \frac{1}{l} \sum_{i=1}^{l} [\hat{z}(s_i) + Z^*(s_i)]; E\{ME\} = 0$$

Root mean square error (RMSE):

$$RMSE = \sqrt{\frac{1}{l} \sum_{i=1}^{l} [\hat{z}(s_i) - Z^*(s_i)]^2}; E\{RMSE\} = \sigma(h=0)$$

Scatter plots of observed vs. predicted values

What is **GWR**?

 GWR analyzes spatially varying relationships between the target variable and ancillary variables;

Developed by Fotheringham and Brunsdon (2000, 2002)

- Based on the "First Law of Geography": everything is related with everything else, but closer things are more related (Tobler 1970);
- βks vary from location to location, and the interpolation can be expressed as:

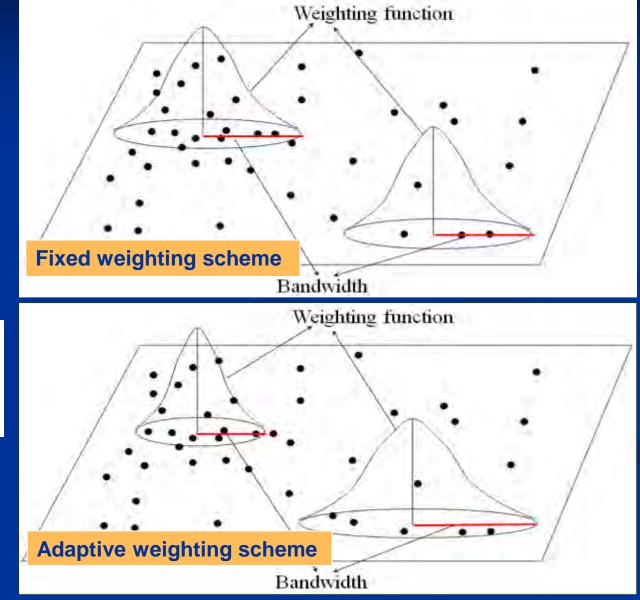
$$y_{i} = \beta_{0} (u_{i} v_{i}) + \sum_{k=0}^{n} \beta_{k} (u_{i} v_{i}) x_{ik} (u_{i} v_{i}) + \varepsilon_{i}$$

($u_{i} v_{i}$) is the coordinates of the *i*th observation
 $\beta_{k} (u_{i} v_{i})$ is a realization of the function $\beta_{k} (u, v)$ at point *i*

GWR vs. **OLS**

OLS:

- Global regression model
- One equation, calibrated using data from all features
- Relationships are fixed
- **GWR**:
 - Local regression model
 - One equation for every feature, calibrated using data from nearby features
 - Relationships are allowed to vary across the study area


GWR Weighting Schemes and Bandwidths

Model parameters
 depend on weighting
 function and bandwidth
 Gaussian scheme:

 $w_{ij} = \exp\left[-rac{rac{d_{ij}^2}{h^2}}{2}
ight]$

➢Bi-square scheme:

$$w_{ij} = [1 - (\frac{d_{ij}^2}{h^2}]^2 \quad \text{if } d_{ij} < h$$
$$= 0 \qquad \text{otherwise}$$

Optimal Bandwidth/Neighbor Selection

- An optimal bandwidth (or nearest neighbors) can be selected by satisfying either
 - the least cross-validation (CV) score:

$$CV = \sum\nolimits_{i=0}^n (y_{i-}y_{j\neq i})^2$$

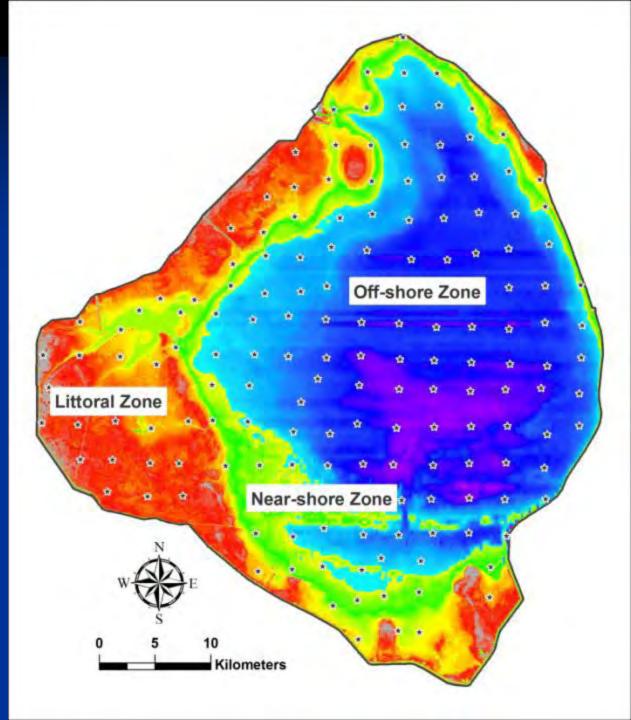
or least Akaike Information Criterion (AIC):

$$\text{AIC}_{\text{c}} = 2nlog_{e}(\hat{\sigma}) + nlog_{e}(2\pi) + n\{\frac{n + \text{tr}(\mathbf{S})}{n - 2 - tr(\mathbf{S})}\}$$

GWR Model Performance & Diagnosis

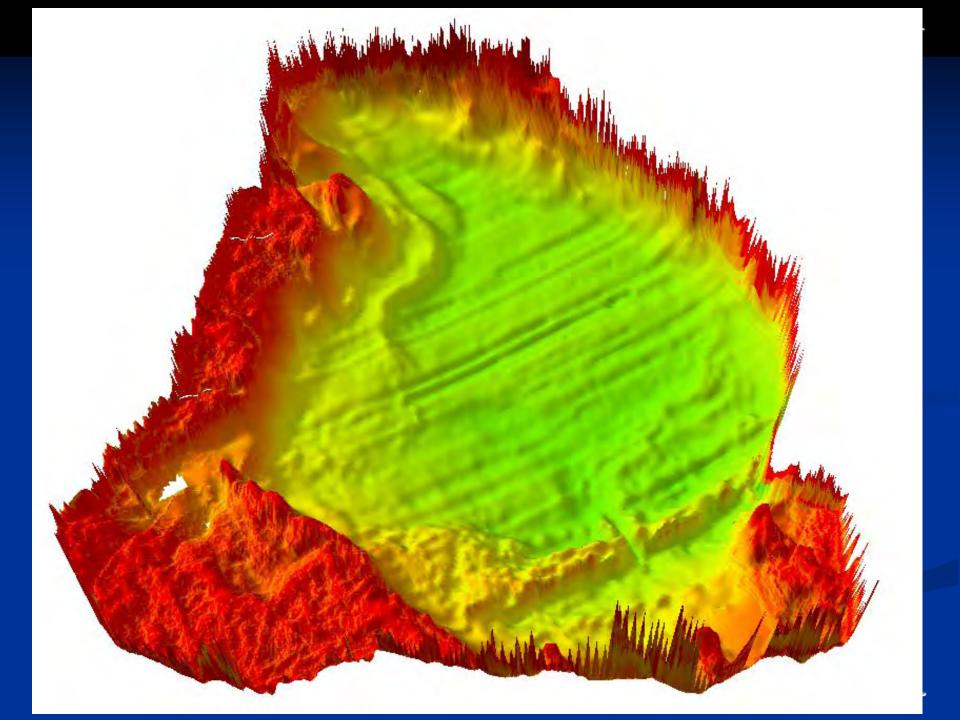
- The corrected AICc is the measure of goodness of fit for GWR models;
- AICc provides a measure of the information distance between the fitted model and the unknown 'true' model;
- AICc can be used to compare the global OLS model with a local GWR model;
- Other model performance indicators:
 - Sum of the squared residuals (SSR)
 - Sigma , and
 - **R**²

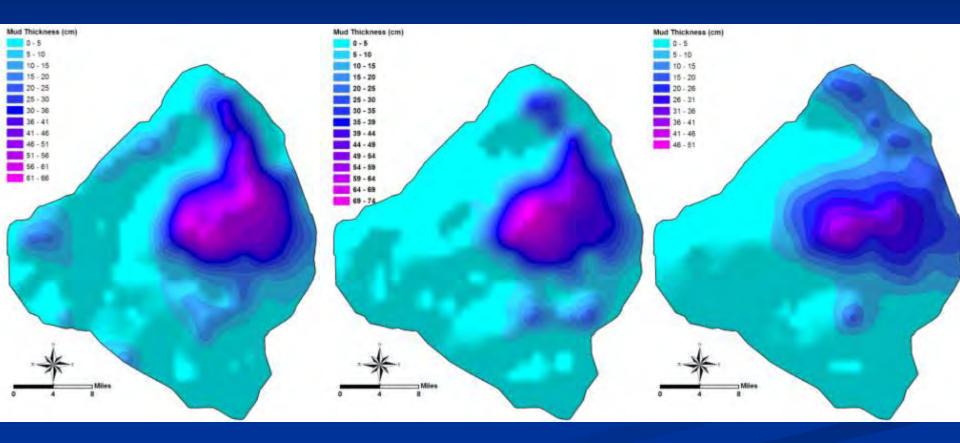
Outline


- I. Background
- **II.** Objectives
- **III.** Methodologies
- **IV.** Data exploration
- v. GWR models for total phosphorus (TP)
- vi. Conclusions

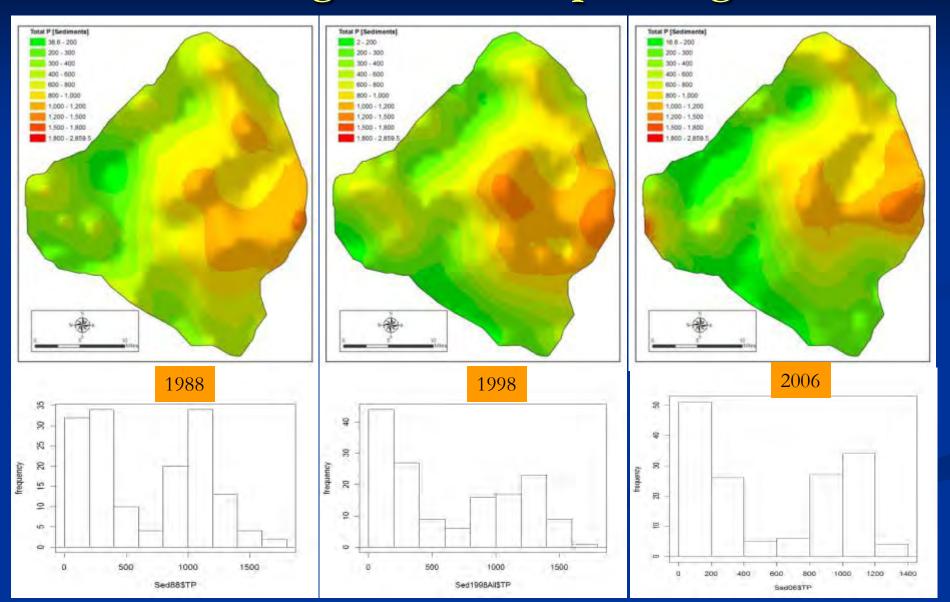
IV. Data Exploration

Sediments Data

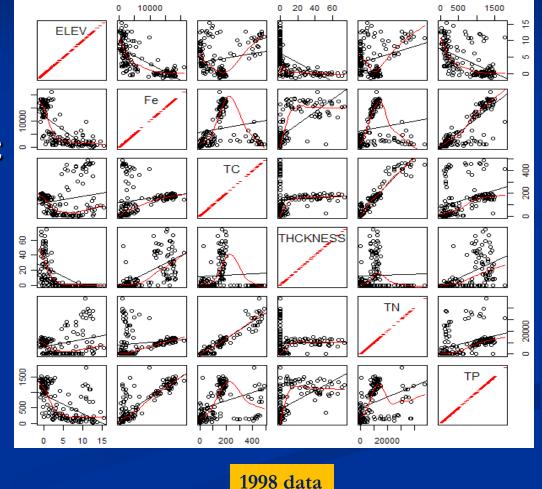

- 170 sediment core samples taken in 1988, 1998 and 2006
- Mud thickness and nutrients (TP, TN, TC, Fe, Ca, etc)
- Mud density
- Digital Elevation Model
 - Lake bathymetry data (2008), and LIDAR (2007-2008)
 - Bathymetry & LiDAR data integration
- Data summarization and characteristics
 - Distribution
 - Trends
 - Correlations


MENT DISTRICT

Bathymetry, eco-zones and sample sites Lake Okeechobee


Mud Thickness Variation Using OK

SOUTH FLORIDA WATER MANAGEMENT DISTRICT


TP Histograms and Maps Using OK

Explore Relationship Using Scatter Plot Matrix

TP

- Strong positive correlation with Fe
- Weak positive correlation with mud thickness and TC
- Weak negative with site elevation
- All these similar correlations exit in all 3 data sets

sfyrmd_gov

Outline

- I. Background
- **II.** Objectives
- **III.** Methodologies
- **IV.** Data exploration
- v. GWR models for total phosphorus (TP)
- vi. Conclusions

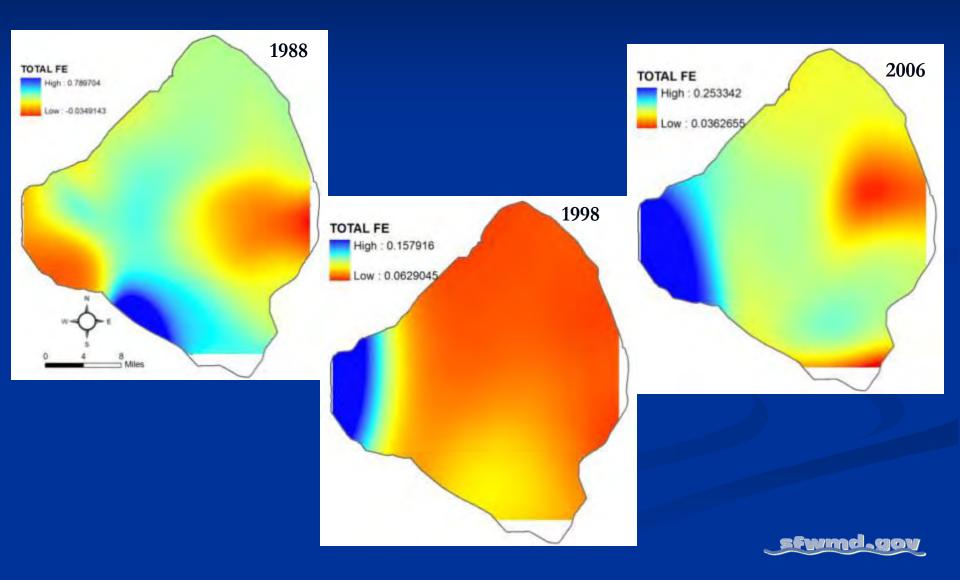
V. GWR Model Calibration & Validation

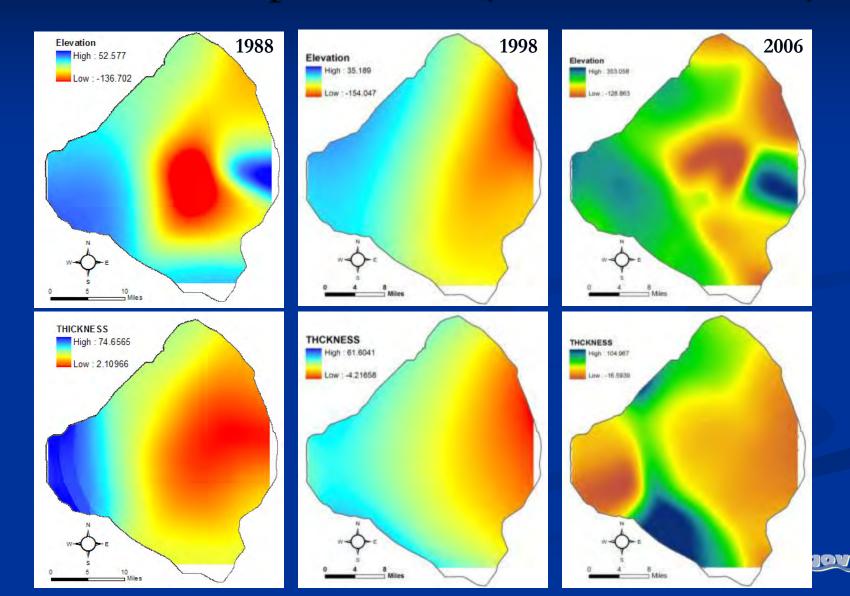
- First identify the best OLS regression models using the ArcGIS OLS Tool;
- Then perform GWR analysis using the ArcGIS GWR Tool;
- Compare the fit/performance of the OLS & GWR models using R² and AICc;
- Select the best GWR sub models for validation.

Statistically Significant Regression Models

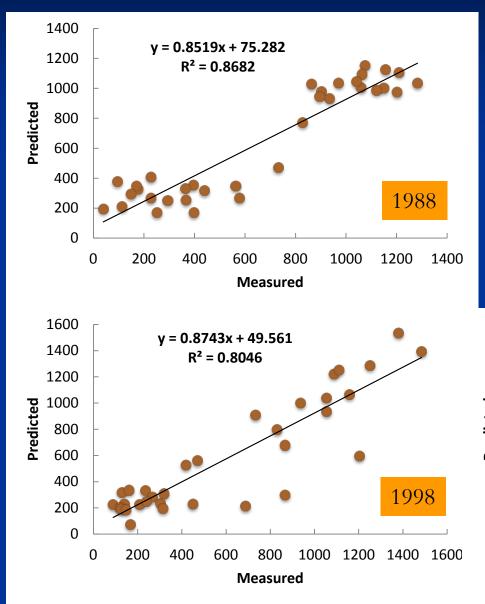
Best regression models identified using OLS
 * TP vs. Total Fe

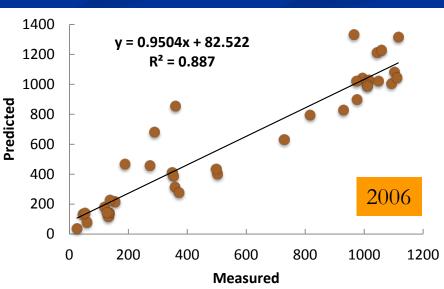
TP vs. Mud Thickness (Th) and Elevation (Elev)

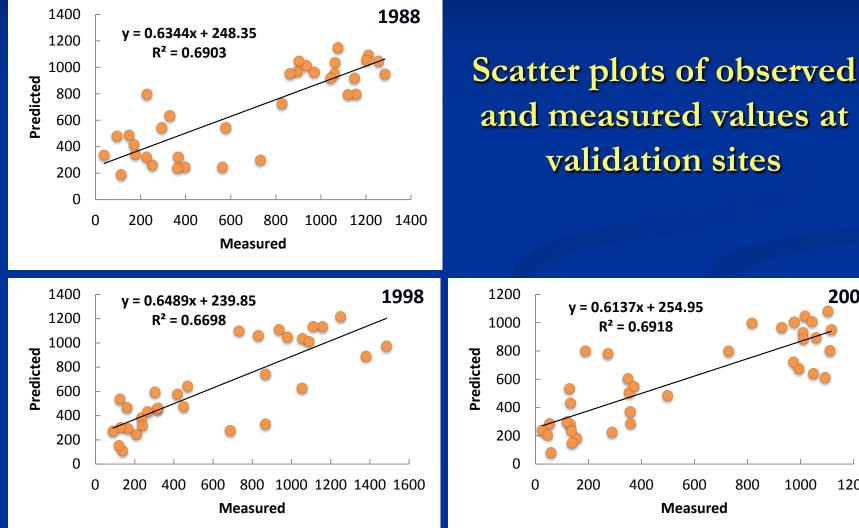

Perform GWR model analysis for these models


SOUTH FLORIDA WATER MANAGEMENT DISTRICT

		GWR Models	Adaptive CV	Adaptive AIC	Fixed CV	Fixed AIC
	2006	Neighbours	32	38	25048.46	28060.8468
		ResidualSquares	1474546	1559401.91	1370525	1479068.08
		Sigma	125.7934	127.1493	125.8744	127.5319
		AICc	1442.359	1442.0453	1445.878	1445.1828
		R ²	0.9322	0.9283	0.937	0.932
		R ² Adjusted	0.9178	0.916	0.9176	0.9155
	1998	Neighbours	114	46	2583312.66	38985.12
		ResidualSquares	5721282	4772089.89	5851677.26	4754339
		Sigma	228.3922	219.3559	228.5793	217.7004
		AICc	1566.658	1563.9183	1566.1879	1560.323
		R ²	0.818	0.8482	0.8138	0.8487
		R ² Adjusted	0.8124	0.827	0.8121	0.8296
	1988	Neighbours	13	38	21433.62	24336.93
		ResidualSquares	2256157	4669867.28	3403058	3809536.23
		Sigma	189.9278	220.3011	205.7668	210.1373
		AICc	1582.818	1567.6434	1564.545	1563.3411
		R ²	0.9067	0.8069	0.8593	0.8424
		R ² Adjusted	0.8314	0.7732	0.8021	0.7936


Coefficient Maps of GWR (TP vs. Fe) Model


Coefficient Maps of GWR (TP vs. Th & Elev)


GWR (TP vs. Fe) Validation Results

Scatter plots of observed and measured values at validation sites

GWR (TP vs. Th & Elev) Validation Result

and measured values at validation sites

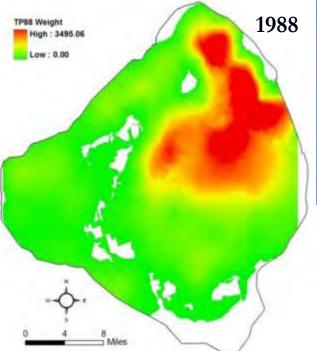
800

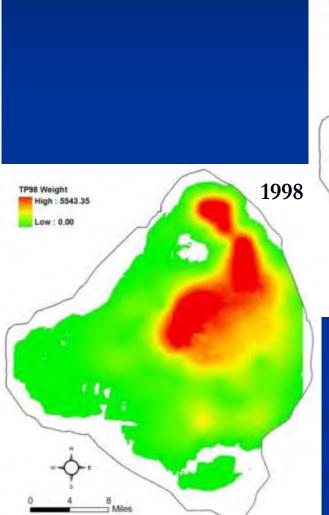
1000

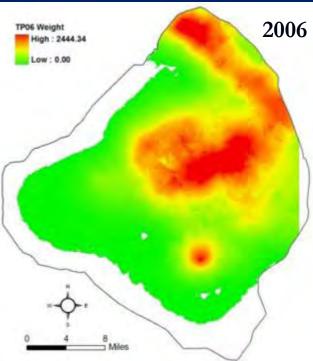
2006


1200

Model Accuracy and Comparison for TP


	Models	ОК	OLS (Fe)	GWR (Fe)	OLS (Th, Elev)	GWR (Th, Elev)
	Mean Error	-27.4	31.19	-30.19	40.21	20.82
2006	RMSE	331	169.96	204.61	325.23	307.6
	NRMSE	26.09	13.4	16.13	25.64	24.25
	Mean Error	-89.5	136.93	132.81	106.64	100.58
1998	RMSE	415.1	374.75	359.83	442.98	389.38
	NRMSE	23.18	20.92	20.09	24.73	21.74
	Mean Error	-41.7	110.94	109.59	64.15	24.39
1988	RMSE	402.1	368.36	375.88	371.97	234.34
	NRMSE	0.24	0.22	0.23	0.22	0.14


sfymd.gov


TP concentration Using GWR (TP vs. Fe)

TP Weight Distribution Using GWR (TP vs. Fe)

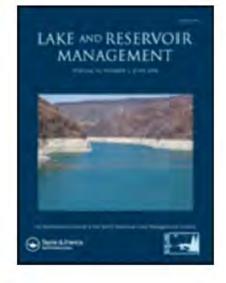
TP Weights (mt) & Changes

Model	Ordinary Kriging			GWR (TP vs Fe)			GWR (TP vs. Th & Elev)			Average
Year	Weight	Change	%	Weight	Change	%	Weight	Change	%	Weight
1988	42,500			42,000			44,300			42,933
1998	58,900	16,400	39%	60,400	18,400	44%	61,100	16,800	38%	60,133
2006	41,400	-17,500	-30%	41,000	-19,400	-32%	40,100	-21,000	-34%	40,833

Outline

- I. Background
- **II.** Objectives
- **III.** Methodologies
- **IV.** Data exploration
- v. GWR models for total phosphorus (TP)
- vi. VI. Conclusions

Conclusions


- GWR (TP vs. Fe) and GWR (TP vs. Thick & Elevation) models were most accurate based on RMSE;
- GWR models use both spatial auto-correlation and correlation between TP and independent variables, which improves the model performance;
- Ordinary Kriging (OK) models use only spatial autocorrelation data, which were weak in Lake Okeechobee and produced higher RMSE;

Conclusions (cont.)

The two best GWR models were used to calculate TP concentrations and TP mass. The TP mass:

increased about 38% - 44% from 1988 to 1998 and
decreased about 30% - 34% from 1998 to 2006;

The TP decline from 1998 to 2006 is likely a result of hurricanes that stirred up the sediments which were then discharged from the lake in 2004 and 2005 hurricane seasons.

Geographically Weighted Regression: A Better Spatial Technique to Model Sediment Quality in Lake Okeechobee

QUESTIONS?

Contact: Yao Yan, PhD. yyan@sfwmd.gov 561-6822077

Kissimmee	Basin
1979-2005	30 %
1996-2005	33 %
2003-2005	35 %

Where the Phosphorus Comes From

Northeast Inflows (C-38 to Canal Point) 1979-2005 33 % 1996-2005 27 % 2003-2005 24 %

Northwest Inflows (C-38 to Moore Haven) 1979-2005 29 % 1996-2005 33 % 2003-2005 39 %

Lake Okeechobee

> Southern Inflows (Moore Haven to Canal Point) 1979-2005 9.2 % 1996-2005 6.8 % 2003-2005 2.4 %

Where the Phosphorus Goes Based on 1996-2005 data

Lake Okeechobee St Lucie Estuary 30 %

Caloosahatchee Estuary 26 % To the Everglades STAs 14 %

Agriculture 29 %

Major References

- Fotheringham, A. S., C. Brunsdon and M.E. Charlton ME, Geographically Weighted Regression: the Analysis of Spatially Varying Relationships, John Wiley & Sons Ltd, West Sussex, 2002.
- Fisher, M. M., K. R. Reddy, and R. T. James. 2001. Long-term changes in the sediment chemistry of a large shallow subtropical lake. Lake and Reservoir Management 17: 217-232.
- Yan, Y. and R. Thomas James, Spatial-Temporal Modeling of Sediments From 1988 to 2006 Lake Okeechobee, Florida. South Florida GIS Expo2008
- Yan, Y., 2011. Development of Methods for Spatial Modeling of Sediments Quality in Lake Okeechobee, Florida. PhD Dissertation, FIU